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The paper is a tutorial intended to serve as a reference in the field of digital audio effects 
in the electronic music industry for those who are new to this specialization of digital signal 
processing. The effects presented are those that are demanded most often, hence they will 
serve as a good toolbox. The algorithms chosen are of such a fundamental nature that they 
will find application ubiquitously and often. 

0 INTRODUCTION 

This paper is intended to serve as a point of reference 
in the field of  digital audio effects for the electronic 
music industry. It is for those who are new to this special- 
ization of digital signal processing so as to advance their 
skill level at inception. The effects presented herein are 
those demanded most often; hence they will serve as a 
good toolbox. The algorithms chosen are of  a fundamen- 
tal nature and therefore will find application ubiquitously 
and often. They include one for reverberation, two for 
filtering, two for delay-line interpolation, one for chorus 
(as well as vibrato and flanging), four for sinusoidal 
oscillation, and one for noise generation. 

It is not necessary to start reading the paper from 
the beginning. The overall tone of the paper is tutorial, 
stressing concepts. The supporting mathematics go to 
some depth in those cases where the algorithms are ana- 
lyzable. The reader is not required to delve that deeply; 
in some cases knowledge of the results alone is suffi- 
cient. The mathematics serve to develop concepts, to 
justify conclusions rigorously, and to offer aid when one 
runs into trouble. Of course, the best way to learn is to 
try the algorithms and invent one's own. 

Our hardware reference standard is a dedicated 24-bit 
two 's  complement fixed-point digital signal processor 
chip [1], typically having 48-bit accumulation of prod- 
ucts, but these algorithms will certainly run on any per- 
sonal computer. Nevertheless, much of the mathematics 

* Manuscript received 1996 March 14; revised 1996 Sep- 
tember 14 and 1997 June 28. 

deals with the impact of finite precision. That will de- 
mand consideration when someone complains of  too 
much noise or grit in your output signal. 

The two most asked-for effects are chorus and rever- 
beration. Reverberation creates an ambient space in the 
perception of the listener. The reverberator presented 
herein is the smallest recursive network we found that 
meets subjective requirements of  good sounding rever- 
beration. This reverberator is not analyzed in great math- 
ematical detail; it is best explored by tinkering, because 
that is how it was developed. There are few enough 
knobs so that the sonic impact of  each is readily dis- 
cernible. 

Filtering for musical purposes involves somewhat dif- 
ferent considerations than what is taught in standard 
texts on digital signal processing (DSP). The most nota- 
ble departure is that of the half-power excursion 1 of the 
magnitude response when regarding audio filters that are 
typically shallow. Simple and accurate design equations 
for an easy-to-operate second-order notch filter and reso- 
nator are developed from the musician 's  point of  view. 
A unifying framework for both filter types develops into 
the Regal ia -Mit ra  topology, which facilitates paramet- 
ric equalization. We then apply the same simplifying 
concepts to the musician's  popular second-order all-pole 
filter, which is used for a wide range of purposes, span- 
ning wa-wa to dynamic noise rejection. The musical 
filtering sections culminate with a unique realization of 
that popular f i l ter - - the  versatile and quiet Chamberlin 
filter topology, the digital analogue to the Moog voltage- 

1 A relative as opposed to absolute measure. 
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controlled filter. 
We scrutinize linear interpolation as a means for delay 

modulation. The modulating delay line forms the basis 
of many standard audio effects. The inherent filtering 
artifact of the linear interpolation process is often over- 
looked, however. We offer an alternative, called all- 
pass interpolation, which avoids the pitfalls in some 
circumstances and sounds very analog. The chorus effect 
is well served by this alternative method of interpolation. 
Chorusing emulates a multiplicity of nearly identical 
sound sources. When only two sources are emulated 
(two voices, including the original), we consider that to 
be the industry-standard chorus effect. This perceptually 
pleasant effect is hard to describe and must be experi- 
enced to be fully apprehended. 

Sinusoidal oscillators are found within nearly every 
audio effect. Although oscillators can generate sound, 
more often than not they are used to control some modu- 
lation process. Delay modulation is a key to successful 
reverberator design. Writing a few simple instructions, 
it is easier to design a terse algorithm to generate a sine 
wave than it is to employ a table lookup. The algorithmic 
approach also results in a purer sinusoid. We examine 
several efficient methods of sinusoid generation, and we 
offer guidelines to aid in the choice. 

Noise generation, seemingly the antithesis of sinusoid 
generation, is discussed. The exceedingly simple maXimal- 
length pseudorandom noise generator is presented as a 
pleasant and soothing sound source. Not only does this 
simple circuit produce a pseudorandom bit stream, it 
also emits a sequence of pseudorandom multibit words, 
each repeating only once per cycle. The cycle time can 
easily be designed to exceed the duration over which 
the human ear can identify patterns. The classical litera- 
ture on these circuits demonstrates that the autocovari- 
ance of the single-bit pseudonoise sequence is a Kro- 
necker delta. Hence the single-bit noise is uncorrelated 
and spectrally white. In the multibit case we find that 
to be only approximately true. Short-lived exponential 
patterns are visible within the pseudonoise sequence, 
revealing correlation. Hence the power spectrum of a 
multibit noise realization via this circuit cannot be per- 
fectly white without equalization. We show how the 
multibit pseudonoise sequence can be precisely modeled 
as linear FIR filtering of the single-bit sequence. Thus 
the power spectrum of the uniform amplitude-distribution 
multibit sequence is known, and we suggest a simple 
method of equalization. 

1 R E V E R B E R A T I O N  

Digital reverberators are like paintings. There are zil- 
lions of them, all of different colors, as no one wants 
the same painting in every room. The engineer's pipe 
dream of the universal reverberator may never be real- 
ized. A treatise on artificial reverberation would easily 
fill volumes. In the past, these networks were so difficult 
to analyze (like Bach fugues) that they have traditionally 
been invented through experimentation. The reason for 
the difficulty is that even the most efficient implementa- 

tions of reverberators rely on all-pass circuits embedded 
within very large globally recursive networks. The all- 
pass circuits themselves have recursive delays measured 
in hundreds of sample periods, whereas the cumulative 
delay around a large recursive network can total on the 
order of tens of thousands of samples. 

The early successful commercial inventors of these 
complicated networks were Griesinger and Blesser. Un- 
fortunately they have written little on this topic. Moorer 
and Gardner have turned the art more into a science. 
Moorer elevates the seminal but crude work of Schroeder. 
Gardner provides a technical chronicle of developments 
in the art of reverberator design, where he also furnishes 
a synopsis of his complete translation of the French van- 
guard Jot. 2 We do not provide sufficient background 
material to permit the reader to fully understand the 
development of the reverberation network for plate emu- 
lation presented herein. The reader is encouraged to refer 
to the references [2]-[9,  pp. 1-28].  

1.1 S i m p l e  R e v e r b e r a t i o n  N e t w o r k  3 

Fig. 1 shows one particular network for producing 
reverberation. We like this topology for several reasons: 
1) It has simple knobs, which easily control particular 
aspects of the reverberated sound, such as input and decay 
diffusion (decorrelation), decay rate, high-frequency 
damping, and input signal bandwidth. 2) The style of 
the topology is more computationally efficient than most 
others known. 3) It has demonstrated applicability to a 
broad range of signal sources. 

We selected the network in Fig. 1 for presentation 
because it is the smallest reverberation network we found 
(in memory and complexity) that is good sounding. We 
believe that there must be a limitless variety of such 
networks, however. The question naturally arises as to 
why the simple digital network shown produces such 
convincing reverberation. We can answer this only 
qualitatively. 

Consider the plucked string of a violin. Its envelope 
may be described as having a coherent exponential de- 
cay. It is this character that is theorized to be one of the 
primary discriminants of nonreverberated sound. Rever- 
berating this sound, on the other hand, would tend to 
randomize the string envelope and phase, producing a 
bumpier, extended, more diffuse and dynamic decay. 

This oversimplified qualitative description of the pro- 
cess of reverberation has actually found its way into 
early commercial products. Long before DSP chips 
could be integrated into sampler type synthesizers, re- 
verberated sampled sound was simulated by altering the 
decay characteristics of recorded dry samples by ran- 
domizing an overlaid envelope applied at playback. 
While not absolutely convincing, this kind of aural cue 

2 Jot recently formulated an analytical design method for 
recursive reverberators. The work is based on a unitary (loss- 
less) feedback loop in a state-space network, where he claims 
arbitrary time and frequency density 

3 This discussion is adapted from conversations with Barry 
Blesser and David Griesinger and is supplemented by Appen- 
dix 1 in Section 1.5 
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was enough to cause pioneers [3]-[5]  to question the 
premise of Schroeder's precipitative work with delay 
lines at Bell Labs during the early 1960s. 

One can deduce from Schroeder's work [7] that to 
achieve the ideal of colorless reverberation, the e i g e n -  

t o n e  4 density of the network needs to approach 3 per 

hertz, It can also be theorized that the limit on the num- 
ber of achievable eigentones is proportional to the total 
delay-line memory [4]. From our current perspective we 

4 An eigentone of a network in this context is a circuit 
resonance. 

z'~ I 
predelay 

x R  

bandwidth 

1. - bandwidth 

,nputdiffusion 1 / / 7nputdi"usion I 

--r--~ J ~ ~  
in0ut0,.os,on  ,o0 ,0,..sion  

672 + EXCURSION ] 

no te  s i g n  _ , j  .~. 

decay diffusion 1 ' diffusion 1 

908+ EXCURSION J 

;at 

z.3  o 

1. - damping 

O 

decay 
damping 

decay diffusion 2 

O 

| 

Fig. 1. Simplified plate-class reverberation topology in the style of Griesinger. For output tap structure (YL, YR) see Table 2. 
Delay-line taps at nodes 24 and 48 are modulating. 
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know that emulation of physical spaces can be convinc- 
ingly performed using sample rates as low as 2 0 - 2 4  
kHz. This is true because of typically rapid acoustical 
absorption in the high-frequency region, and because 
the desired output is a mix with the dry input signal. This 
bandwidth would then require about 30 000 eigentones, 
hence about 64K words of delay-line memory. In the 
1960s, that amount was not economical. 5 

In reverberator design, while a good general rule re- 
garding delay-line memory is certainly "the more the 
better" [4], the efficient reverberation network shown in 
Fig. 1 stands as a testimony 6 that Schroeder's eigentone 
density criterion, predicting about 88K words of mem- 
ory, is not a hard and fast rule. Of  at least equal impor- 
tance are the decorrelation of  the decay and the associ- 
ated time density of the echoes, that is, one must achieve 
a balance between eigentone density and echo density. 

1.2 C o l o r  

On the other hand, our reverberation network's signal 
response is not colorless. Empirically we find that some 
of the most sought after commercial reverberators are 
somewhat colored in their frequency responses. This 
means that their outputs impose some conspicuous audible 
resonances upon the input signal. Consequently it is not 
unusual to find as many musicians and recording engineers 
who like a particular reverberator as those who do not. 

We also find that some recording engineers do no t  

want an accurate emulation of a physical space, because 
the reflection density takes too long to build. Instead, 
they sometimes want instantaneous high-density reflec- 
tions with smooth exponential decay of the envelope, 
having randomization in only the phase trail. This desire 
most closely describes the plate class of reverberators, 
which we present here. 

1.3 D i s c u s s i o n  of t h e  R e v e r b e r a t o r  

Scrutinizing the reverberation topology in Fig. l ,  we 
can break it down into a cascade set of  four input dif- 

5 The Lexicon model 224 digital reverberation system intro- 
duced in 1979 originally possessed only 16K words of mem- 
ory, operating at a sample rate of 20 kHz. That memory amount 
doubled shortly thereafter. The Elecktromesstechnik Wilhelm 
Franz KG EMT-250 digital reverberator distributed in the 
United States by Gotham Audio Corporation beginning in 
1977, operated at a sample rate of 32 kHz, having only 8K 
words of memory. The precursor to this machine is described 
in [10, ch. 2]. 

6 Given a 30-kHz sample rate and having only 22K words 
of memory (not including predelay). 

fusers (the lattices) followed by another set of  four tank 
diffusers, the latter arranged so as to feed back on them- 
selves globally. The first set of diffusers acts to quickly 
decorrelate the incoming sound somewhat, preparing 
that sound to be looped indefinitely in the holding tank 
formed by the second set of  diffusers. What we hear 
comes from a large set of output taps (not shown) located 
within the tank. 

1.3.1 Input Diffusers 
All the diffusers are all-pass filters having the topol- 

ogy of a lattice. The purpose of the four input diffusers 
is to decorrelate the incoming signal quickly before it 
reaches the tank. The tank recirculation can sometimes 
become perceptible as strong cyclic events if the input 
signal is not preconditioned in this manner. This function 
becomes especially important for the successful rever- 
beration of percussive sounds. One may think of this 
function as signal-phase randomization, to reduce pea- 
kedness and other strong features of the input waveform. 

No diffusion corresponds to zero-valued all-pass coef- 
ficients, while coefficient magnitudes close to unity pro- 
duce buzzing that is local to the afflicted all-pass filter. 
Optimum diffusion for the all-pass filter lies somewhere 
in a region closer to 10.51 than to the extreme values of 
the coefficients. The preset values given in Table 1 were 
determined by trial and error. 

1.3.2 Tank 
We identify the reverberation tank as the recirculating 

four lowest diffusers in Fig. 1. We call it a tank because 
its purpose is to trap the incoming sound by making it 
recirculate through the global figure eight. The four de- 
cay coefficients determine the rate of decay. When the 
decay coefficients are set very close to 1.0 (and the 
damping filter within the tank is turned off) ,  the sound 
will remain held in the tank indefinitely. That in itself 
is a neat effect, but unless the sound metamorphoses 
while in the tank, it is easy for us to detect the looping 
pattern of sound. The purpose of the diffusers within 
the tank, then, is to eliminate any aural pattern in the 
recirculation. The tank diffusers are not always success- 
ful (being signal dependent), and their settings are criti- 
cal to achieve an overall exponential decay; everything 
must be set by ear. 

The tank, in summary, is a simple device whose pur- 
pose it is to alter the tail of a decaying sound, as men- 
tioned already. The tank diffusers have been further 
grouped into pairs labeled by the knobs "decay diffusion 

Table 1. Reverberation parameters default. 

Sample rate F s = 29761 Hz 
EXCURSION = 16 
decay = 0.50 
decay diffusion 1 = 0.70 
decay diffusion 2 = 0.50 
input diffusion 1 = 0.750 
input diffusion 2 = 0.625 
bandwidth = 0.9995 
damping = 0.0005 

Maximum peak sample excursion of delay modulation 
Rate of decay 
Controls density of tail 
Decorrelates tank signals; decay diffusion 2 = decay + 0.15, floor = 0.25, ceiling = 0.50 
Decorrelates incoming signal 

High-frequency attenuation on input; full bandwidth = 0.9999999 
High-frequency damping; no damping = 0.0 
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1" and "decay diffusion 2." The tank diffusers have 
overlapping functionality. The dichotomy we make is 
aurally subtle and pertains to the temporal location of 
the diffusers in the tank with respect to a stereo tank 
input, that is, exactly when they diffuse the tank signal 
with respect to the signal onset. The effect of these 
knobs is best observed using a percussive input, or what 
Griesinger refers to as a "pink click.'7 

1.3.3 All-Pass Lattice Topology 
Each diffuser has been given the topology of a two- 

multiplier lattice. The eight lattices shown in the rever- 
berator schematic in Fig. 1 are used in this reverberation 
effect as all-pass filters, each having a long impulse 
response time.8 The two coefficients within each individ- 
ual lattice must remain identical to maintain the all- 
pass transfer function, which is insensitive to coefficient 
quantization. The recommended range of these coeffi- 
cients is from 0.0 to 0.9999999 (q23; see Part 3, Section 
9.1, Appendix 7) If the lattice coefficients should exceed 
1.0, instability would result. Making them both negative 
will change the character of the impulse response 9 but 
does not destroy the all-pass transfer. This change in 
character is exploited in the lattices having the coeffi- 
cients called "decay diffusion 1" in the schematic. This 
character change further enhances the dichotomy be- 
tween the two pairs of tank diffusers. 

All-pass response is the forced (steady-state) response 
of each lattice output with respect to its own input.l~ 
Because the impulse response of each individual lattice 
within the reverberator schematic is so long, in some 
cases the integration time constant of the human hearing 
system is exceeded. This means that an all-pass filter 
output may be perceived as discretized events, that is, 
not all pass. 

This all-pass lattice topology tends to clip prematurely 
at internal nodes, so the input to each lattice cannot be 
presented with a full-scale signal at all frequencies. We 
like this all-pass lattice, however, because it is efficient 
in its implementation. 

1.3.4 Magnitude Truncation 
Lattices produce distinct low-level tones, after the 

input signal has been removed, known as zero-input 
limit cycles. The origin of these tones stems from ongo- 
ing signal quantization in a recursive topology. The 

7 A click source having a pink spectrum. 
s The impulse response is that of an upsampled first-order 

all-pass filter. This filter basically has an exponentially de- 
caying impulse response with or without a multiplicative factor 

n 1 of ( - 1) - , depending on the sign of the coefficient. The up- 
sampling factor L is determined by the number of samples in 
the lone delay line z -L within the lattice. The up-sampling 
process inserts L - 1 zeros between every sample of the 
impulse response of the corresponding first-order all pass filter. 

9 Via the multiplicative factor ( - 1 )  "-~ on the impulse 
response. 

~0 The reverberation network as a whole does not have an 
all-pass transfer function, although we would like that to be 
the case. Smith [9, pp. 1-28] has found a way to make an 
entire reverberation network all pass. Smith's method is based 
on the interconnection of lossless waveguides. 

spontaneous tones can be eliminated through the use of 
magnitude truncation (truncation toward zero; see Part 
3, Section 9.2, Appendix 8) of the double-precision in- 
termediate results written out to single or lower precision 
delay-line memory. Magnitude truncation is well k n o w n  
to subdue limit cycles in digital networks composed of 
ladders and lattices [9]. 

Only the recursive circuits require magnitude trunca- 
tion. In Fig. 1 the write to the predelay does not require 
magnitude truncation. If delay-line memory is 24 bits 
in width, then the need for magnitude truncation is obvi- 
ously lessened when compared to having delay-line 
memory of only 16 bits in width. 

Magnitude truncation, in the specific case of reverber- 
ator tank topologies employing lattice or ladder all-pass 
circuits, can reduce the network noise floor by 12-24 
dB after the input signal is removed. The reason this is 
true is that the predominant noise mechanism is zero- 
input limit-cycle oscillation,11 a multiplicity of which is 
perceived as a whooshing ocean noise floor. The magni- 
tude truncation makes the reverberator output eventually 
go to absolute zero, two's complement. The disadvan- 
tage to its use is that the THD + N (total harmonic distor- 
tion + noise) of a steady-state sinusoid through the 
linear reverberator network can be increased by any- 
where from 0 to 6 dB. 

1.3.5 First-Order Filters 
The three single-pole low-pass filters used for input 

signal bandwidth control and reverberator tank damping 
will not clip prematurely at any node [11, ch. 11.3], 
[12, p. 857] when implemented as direct form I. The 
damping filters cause high frequencies to decay within 
the tank more quickly than low frequencies. On the 
input-bandwidth filter, the bandwidth coefficient tracks 
the cutoff frequency. In contrast, the damping coefficient 
is high when the damping filter cutoff frequency is low. 
The recommended range of these coefficients is from 0.0 
to 0.9999999 (q23; see Part 3, Section 9.1, Appendix 7). 

Because they are all first-order low-pass filters, any 
low-level zero-input limit cycles they might produce 
would be at dc, that is, they will not produce tones like 
the lattices [11, ch. I 1.5]. Any signal-truncation noise 
power spectrum generated by the filters themselves will 
be centered at de, since it follows the pole frequency. 
The peak gain of the noise power spectrum is not great 
because typically the lone pole is relatively far from the 
unit circle. 12 

1.3.6 Output Tap Points 
From the pseudocode note that the delay-line tap 

structure forming the stereo output signal YL and YR is 
an all wet (reverberated) signal (Table 2). This particular 
output tap structure is characteristic of the plate emula- 

II Here we use the term "limit cycle" in the classical DSP 
sense. 

12 If instead the filters were high pass, limit-cycle tones 
might be produced at Nyquist while the truncation noise power 
spectrum would also be concentrated there. 
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don class of  reverberation networks. 13 Also note that the 
output tap structure produces a synthetic stereo image 
because the stereo input is converted to a monophonic 
signal at the reverberator input for this particular topol- 
ogy. Normally,  the desired output is a mix of the stereo 
reverberated signal YL and YR with the original (dry, full- 
bandwidth) stereo input signal x L and XR. 

1.3.7 Delay Modulation 
Linear interpolation or, better yet, all-pass interpola- 

tion (as discussed in Part 2, Section 5) can be efficiently 
employed to modulate slowly x4 the nominal tap point of  
the two indicated delay lines in the schematic. A slight 
modulation will introduce undulating pitch change into 
the tank. For signals with much high-frequency content, 
such as drum sets, these built-in modulators serve to 
break up some pretty audible modes, that is, the amount 
of  tank diffusion is effectively increased. 

Barring air currents and temperature fluctuations, 
there is no analogue to this modulation process in a 
real room (unless the walls are moving). Without the 
modulation, we may well describe the imaginary space 
emulated by the given digital network as being enclosed 
by a picket fence. The slow modulation serves to increase 
effectively the sheer number of resonances (eigen- 
tones, modes of oscillation, picket density) in the tank. 
The number of resonances in a real room, hall, or plate 
is probably far beyond what is existent in our little (non- 
modulating) reverberation network. In the case of  drum 

la The physical "plate," actually resident in some contempo- 
rary recording studios, fills a small room in some embodi- 
ments. The best plates are constructed using a solid g.old foil. 
The input signal is typically injected onto the plate via one or 
two transducers, while each output is the sum of multifarious 
signal taps, each tap transduced at a different location on 
the plate. 

14 At a rate on the order of 1 Hz, and at a peak excursion 
of about 8 samples for a sample rate of about 29.8 kHz. 

Table 2. Output taps. 

/********* left output, all wet *********/ 

accumulator = 0.6 X node48_541266] 

accumulator += 0.6 x node48_54[2974] 

accumulator -= 0.6 X node55_59[1913] 

accumulator += 0.6 X node59_63[1996] 

accumulator -= 0.6 X node24_30[1990] 

accumulator -= 0.6 x node31_33[187] 

YL = accumulator - 0.6 X node33_39[1066] 

/********* right output, all wet *********/ 

accumulator = 0.6 X node24_30[353] 

accumulator += 0.6 X node24_30[3627] 

accumulator -= 0.6 X node31_33[1228] 

accumulator += 0.6 X node33_39[2673] 

accumulator -= 0.6 X node48_54[2111] 

accumulator -= 0.6 X node55_59[335] 

YR = accumulator - 0.6 X node59_63[121] 
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sets, the modulation is a godsend. In the case of  piano, 
the modulation, though slight, may be objectionable be- 
cause of a perceived vibrato. 

Ideally, all the delay lines in the tank diffusers should 
be modulated using different modulation rates and 
depths. In that case, the diffusion burden becomes more 
distributed. Hence the required rate and depth of modu- 
lation are lessened for each diffuser. When computation 
time is a constraint, then one should preferentially select 
the stereo pair of  the diffusers appearing earliest in the 
tank, as we have, to maximize the increase of  effective 
resonances. In this case, the same rate and depth are 
used for each diffuser in the pair, but we use a quadrature 
oscillator to decrease the correlation. (Sinusoidal oscil- 
lators are discussed in Section 7.) The differing delay- 
line lengths of  all the diffusers also serve to decrease 
the correlation. 

As explained in Section 4; linear interpolation for de- 
lay modulation will introduce time-varying low-pass fil- 
tering as an artifact, thus supplying some unaccounted 
damping to the tank. All-pass interpolation overcomes 
this particular problem and is perfectly applicable to 
reverberators because the required pitch change is 
microtonal. 15 

1.4 C o n c l u s i o n  

Choosing a particular reverberator for a particular ap- 
plication is commonplace, and purveyors of  such equip- 
ment have been known to purchase an audio signal pro- 
cessing box just to acquire one particular algorithm.16 
At some level, the choice of reverberator becomes a 
matter of taste, much like art. There is no one universal 
reverberation network that satisfies everyone for each 
and every application; we speculate that there never 
will be. 

1.5 A p p e n d i x  1: R e v e r b e r a t i o n  R e c o l l e c t i o n s  

Dear Jon, 
What you wrote was fine, but it stimulated my mem- 

ory of additional snippets. Feel free to use what you 
want. 

I had a personal conversation with Manfred Schroeder 
in the late 1970s and I asked him the question about 
what the phrase "maximal incommensurate" delay val- 
ues meant, as it appeared in one of his reverberation 
papers. His answer was particularly interesting. This is 
a paraphrase based on my tired memory: 

We did the electronic reverberation for amusement 
because we thought it would be fun. Since it took the 
better part of  a day to do 10 seconds of reverberation, 
we only ran one sample of music. The notion of delay 
time selections was random in that we just picked a 
bunch of numbers and there was no mathematical ba- 

15 The sinusoidal low-frequency oscillator driving the 
modulator must have a rate of update that is the same as 
the audio sample rate, that is, the two sample rates must be 
identical. Otherwise, aliasing artifacts will be introduced 
into the audio signal path. 

16 Much like buying a Compact Disc because one likes 
the title track. 
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sis. We just wanted to prove it could be done. 
He never related this work to his more profound math- 

ematical and perceptual research, specifically the work 
on the required 3-eigentone/Hz density and the frequency- 
phase statistics in a random physical space. 

The original EMT reverberator, model 250, operating 
at a 32-kHz sample rate, used a main memory of 8K 
words, and the required eigentone density was emulated 
entirely by randomizing delay lines. Another interesting 
fact is that colorless reverberation, using all-pass struc- 
tures, is perceptually not colorless. Even white noise 
passed through an all pass will not sound like real white 
noise. When passed through many such all-pass struc- 
tures, it in fact sounds like a machine shop rather than 
random noise. It still measures spectrally flat. The reason 
is that frequency regions get bunched in time. It is very 
much like a chirped sine wave in radar having a purely 
fiat spectrum but being very different from white noise. 
The second- and higher order statistical terms out of an 
all pass are very, very different from a real random 
process. The utility of an all pass is to pass all frequen- 
cies through so that each all pass can see the same spec- 
tral density, otherwise comb peaks would align and dom- 
inate. Parallel structures of non-all-pass elements 
achieve a similar issue in that each structure gets fed 
the full spectrum. All-pass elements are more critical 
for small delay values. An all pass within a larger loop 
must be used with great care since it has a sinelike 
variation in group delay. Hence the effective loop time 
and reverberation time vary with frequency. After many 
trips around the loop, the result will be very colored. 

Schroeder's had several analyses about reverberation, 
but his 3-eigentone/Hz theory, which maps to 3 seconds 
of memory, can be looked at in many ways. His result 
was empirical, based on listening tests. Consider two 
eigentones, or poles, separated by 1 Hz and located in 
the s plane with a real part of - 10 Hz. When excited, 
this will produce two damped exponentially decaying 
frequencies which differ by 1 Hz. Hence there will be 
a 1-Hz envelope beat, which is clearly audible. Now 
add other eigentones, randomly spaced but still at a 
distance of - 10 Hz. Assume 10 such eigentones. All 
of  them will beat with each other, producing a random 
envelope with a spectrum that is crudely flat from 0 to 
10 Hz. One can do this simulation in closed form with 
variable excitation of each eigentone. Schroeder's result 
actually depends on the nominal reverberation time since 
that determines how many eigentones will get excited 
by a narrow-band input. In the early reverberation boxes, 
with only 150 ms of reverberation, typically only a few 
tones would be excited. The envelope had a clear period- 
icity of 6 Hz on average. It sounds bad. Some regions 
had only two eigentones excited with a distance of 2 
Hz, which was even worse. Development was much 
more exciting with such limited memory. Today one 
can use 1 second of DRAM memory. Many simpler 
structures will thus produce good reverberation. 

The perceptual simulations deviated from physical 
reality in many ways. For example, a natural three- 
dimensional space has an increasing eigentone density 

that is proportional to the square of frequency. All elec- 
tronic simulations tend to have a constant density. The 
reason is that in a three-dimensional space, the speed of 
sound along a dimension is proportional to the sine of the 
wave front direction, whereas in an electronic structure it 
is always constant. 

That is what I remember, so do what you wish with 
it. Best of luck. 

Sincerely yours, 
BARRY BLESSER 
Blesser Associates 
Electronics & Software Consultants 
Belmont, MA 02178, USA 

2 M U S I C A L  F I L T E R I N G  

The first-order recursive filter is by far the safest and 
most economical choice. Low in noise, it should be used 
wherever possible, and in cascade if necessary. For the 
design of shelving filters, which are conventionally first 
order, refer to [ 13]. When a filter having a steeper transi- 
tion band is desired, it is usually sufficient to employ a 
second-order filter. Musical filters do not often see or- 
ders higher than that. 17 

In this section we discuss filtering requirements for 
musicians whose criteria are quite different from those 
of the electronics engineer. Our treatment of filtering 
will consider only the second-order case and predomi- 
nantly all-pass topologies. The applications of these fil- 
ters are broad; we note a particular suitability to paramet- 
ric equalization. The more involved topic of truncation 
noise recirculation is not discussed in this section, al- 
though we do discuss limit cycles and internal signal 
overflow. The more curious reader is referred to [12] to 
find remedies for truncation noise within the direct form 
I topology. 

For those readers new to digital filtering, the eminent 
theoretician, practitioner, and mentor of DSP and elec- 
tronic music, Julius O. Smith, presents a splendid intro- 
duction to classical digital filter theory in [15, ch. 2], 
requiring only basic mathematical skills. Strawn's audio 
signal processing book [15] is written from the musi- 
cian's standpoint, hence it is highly recommended. 

2.1 Fi l ter  (O) Select iv i ty  

Electronics engineers are accustomed to think of digi- 
tal filters analytically in terms of po le -ze ro  constellation 
and locus, cutoff frequency, passband ripple, transition 
band or slope, stopband attenuation, and so on. Musi- 
cians and recording engineers are more comfortable 
thinking in terms of filter parameters--gain or cut, cen- 
ter frequency, filter Q (selectivity) or bandwidth. For- 
mally, filter Q is defined as the positive quantity 

t% _ t% (1) 
Q - A o ~  o~2-COl 

17 When a filter that is steeper than second order is required, 
it is advisable to construct it as a cascade of second-order 
sections. That will mitigate any coefficient sensitivity or trun- 
cation noise problems [ 11, oh. 11.4-11.6], [ 14]. 
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that is, the center frequency divided by the bandwidth. 
The bandwidth is determined from the particular defini- 
tion of the cutoff frequencies o h and to2 (in radians). 
Traditionally the cutoff frequency coincides with an ab- 
solute half-power level. In the archetypal case of  a steep 
unity-gain (0-dB) low-pass filter we recall this level as 
corresponding to the frequency at which the magnitude- 
squared response reaches - 3 . 0 1  dB [ =  10 logx0(1/2)]. 
But shallow audio filters may not have an absolute half- 
power level. So we must refine the definition of cutoff 
frequency in terms of half-power e x c u r s i o n ,  no t  an abso- 
lute level [16]. 

Take, for example, the cut filter magnitude-squared 
response shown in Fig. 2. This example response has a 
Q of 2. We define the two musical cutoff frequencies 
as corresponding to the level at which 

1 -IHie>)12 1 
I - IH~(eJ'%)IZ = 2" (2) 

We must solve this equation for to. There are two solu- 
tions, tol and % .  Referring to Fig. 2, this equation in- 
structs us to measure the bandwidth halfway down the 
trough of the m a g n i t u d e - s q u a r e d  response. This makes 
intuitive sense. We cannot use the traditional definition 
of cutoff frequency for this example because the trough 
is not deep enough. But note that if Ino(eJ%12 = 0 (notch 
filter), then the solution to Eq. (2) would correspond to 
the traditional definition of cutoff frequency. 

The situation is pretty much the same for the resona- 
tor. Whereas the cut filter approaches unity asymptoti- 
cally at z = • 1, the resonator is loosely defined as a 
second-order peaked filter having a peak gain normalized 
to unity at its center frequency. The resonator is easily 
formulated such that its magnitude-squared response is 
an exact flip of  the corresponding cut filter about the 
horizontal half-power excursion line, that is, it is sym- 

metrical with the cut filter. We shall shortly see how. 
This is the reason why many of the numbers are exactly 
the same in both Figs. 3 and 2. 

For the resonator (rather, the normalized boost filter) 
we acquire the two musical cutoff frequencies % and 
% ,  solving the slightly different equation 

1 - IHb .o= (eJ ' ) l  2 1 

1 -lHboo= (• 1)1 = 2" 
(3) 

Like before, the bandwidth is measured halfway up  the 
peak of the magnitude-squared response in Fig. 3. Again 
we note that if IHb.o= ( -  1)12 = 0 (perfect resonator), 
then the solution to Eq. (3) corresponds to the traditional 
definition of cutoff frequency. 

Having gained an understanding of musical filter Q, 
we begin with two unique and musically useful digital 
filter transfer functions, which precisely fit our definition 
of filter selectivity. 

2.2 Cut Filter 
When constructing a notch filter, we expect there to 

be an absolute zero of transmission at some selected 
frequency in its transfer function. I f  we use a filter that 
only has zeros (that is, no poles), we can indeed make 
a notch. The problem with this approach is that the rest 
of  the magnitude response would not be very fiat, as we 
might like it to be. We might also like a "surgical" 
notch, one that has high selectivity. Fig. 4 is an example 
showing the magnitude transfer of a badly designed 
notch filter evaluated along the unit circle in the z plane. 
The zero radius is R = 1, whereas the zero angle is 
0 = 1 rad. This transfer function has two trivial poles 
a t z  --- 0. 

The magnitude response shown in Fig. 4 would pretty 
much obliterate a musical signal, especially because of 
the gain at high frequencies. Note that if the zero were 

IHc(eJ~ 
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Fig. 2. Cut filter excursion ~ 1.7 dB. 
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moved  to a new fixed frequency,  the rest o f  the magni-  
tude response would change its shape in an undesirable 
way. Hence  this part icular  notch filter is not very useful 
for  surgical filtering. 

In [13] it was shown how to make  the passband por- 
tions of  the notch filter flat, and how to achieve high 
selectivity. This is accomplished by adding nontrivial  
poles.  The result is illustrated in Fig. 5 and expressed 
in the t ransfer  function 

1 + 2~/z - 1  + z - 2  

H.(z) = (1 + 13) 1 +~/(1  + 13)z -1 + 13z -2"  (4) 

2. 
This notch filter [Eq. (4)] has an absolute zero having 
control lable selectivity there at its center  f requency,  
while its magni tude at dc and Nyquist  is a l w a y s  1, re- 
gardless of  the center  frequency. We must  determine 
how to obtain a t rough of  arbitrary depth while main- 
taining the other attributes. This would be called a p a r a -  

m e t r i c  cut filter. Before  we do that, however ,  we look 
at the resonator ,  which is an exact  powerwise  flip of  this 
notch filter about  a horizontal.  

2.3 Resonator 
One use of  a perfect  resonator  in electronic music is 

to synthesize ping sounds via impulsive excitation. We 
discuss a more  general  resonator  for use as a musical  
filter. It is easy  to construct  a s imple resonator  using 
only poles.  But such an approach has problems similar 
to those we encountered with the all-zero notch filter, 
especial ly  with regard to shape, selectivity,  and magni-  
tude. In part icular,  the peak magni tude will vary as the 
center  f requency is changed to new fixed values.  

In [11, ch. 4.3] it was shown how to normal ize  the 
height of  the resonator  peak  magni tude as the center 
f requency changes,  namely ,  by adding two zeros,  one 
at Nyquis t  and the other at dc. This musical ly  useful 
result  is illustrated in Fig. 6 and expressed by the 

equation 

1 - z =2 
Hr(z) = (1 - [~) 1 4- ~/(1 "]- [~)z -1 + [~z -2"  (5) 

This filter has a peak gain that is a l w a y s  precisely 1, 
regardless of  the center frequency. This is characteristic 
of  a resonator.  The two zeros make  the skirts of  the 

I1 - 2 R c o s ( 0 )  z -1 + R 2z-21 @ z = e  j~ 

i. 
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0.5 1 1.5 2 2.5 3 
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Fig. 4. Poor notch filter; R = 1, 0 = 1. 
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magnitude-squared response go to zero at the extremit- 
ies. When the extremities reach zero, we call this the 
per fec t  resonator [Eq. (5)]. We must determine how to 
make skirts of  arbitrary dep th- - the  resonator. We must 
also determine how to place the skirts at absolute magni- 
tude 1 while achieving arbitrary peak heights; that would 
be called a parametric boost filter. We have yet to define 
~/and 13. 

2.4 Musical Filter Topology 
The two transfer functions H,(z)  and Hr(z) have some 

desirable theoretical and practical properties. First, there 
is a strong bond between Eqs. (4) and (5). Because their 
denominators are identical, there exists one circuit that 
can generate both. Second, there is a simple relationship 
between the coefficients 13 and ~/and the musical filter 
parameters toe and Q. 

Consider the all-pass lattice topology shown in Fig. 
7. It has the all-pass transfer function 

A(z) - Y(z) 13 -t- ~(1 q- 13)z -1 Jr- z -2 
X(z~) - 1 + ~/(1 + 13)z -1 + [~z -2"  (6) 

Some characteristics of the all pass filter are summarized 
in Fig. 8 and the equations 

[A(eJ'~ = 1, A ( -  1) = ! ,  A(e j~ = - 1 . 

(7) 

It is interesting that the non-minimum-phase all-pass 
filter will shortly become integral to a parametric filter 
that is indeed a minimum-phase design. We also note 
in passing that the transfer to Dr(z ) from the input com- 
prises only the denominator (the poles) of A(z),  

Dr(g ) = X(z) 
1 + ~/(1 + 13)z -1 q- 13 Z-2 .  

1 
Absolute 

0.8 

0.6 

0.4 

0.2 

IHr(eJC~ 

0.5 1 1.5 2 2.5 3 

Fig. 6. Perfect resonator; Q = 2, co c = 1. 

O) 

Back to the problem at hand, it is easily proven that 

n, (z )  - 1 - A(z)  
2 (8) 

1 + A(z) 
H.(z)  - 2 (9) 

Substituting Eq. (6) into Eqs. (8) and (9), we can derive 
Eqs. (5) and (4). This means that we can construct notch 
and perfect resonant filters from an all-pass filter. We 
only have left to show that using the all-pass filter we 
can construct cut, resonant, and boost filters as well. We 
will use the fact [Eq. (7)] that at the critical frequency 

~ = a r c c o s ( - ~ )  (10) 

the all-pass filter output is 180 ~ out of phase with respect 
to a steady-state sinusoid at its input. This critical fre- 
quency becomes the normalized center frequency r = 
2~rfcT (with T being the sample period) for all filter 
types employing the topology shown in Fig. 9. 

In Fig. 9 we have introduced a new control coefficient 
k. When k = 0, the network in Fig. 9 implements the 
notch [Eq. (9)] exactly, and when k = 2, this same 
network implements the perfect resonator [Eq. (8)] ex- 
actly. Within these bounds, this control (for k < 1) gives 
us the ability to specify the depth of the cut, leaving the 
magnitude at the extremal frequencies equal to 1. Using 
the same network for the resonator, we can control the 
depth of the skirts (when k > 1), leaving the absolute 

~ "Sk[ A(eJ ~ ) 

( o c = l  

-3 -2 -1 - 2 ~ ' ' " ~  . . . .  

Fig. 8. All-pass radian phase responses. 

0) 

1/2 '~~-, 1+-~1-kl 

Fig. 9. Cut, notch, or resonator type filter. X,z,  
Y(z) 

Fig. "7. Lat t ice second-order all-pass f i l ter. 
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peak frequency magnitude at precisely 1. These actions 
explain the unusual looking normalization coefficient at 
the output. 

The action of the control coefficient k is characterized 
in Table 3 and illustrated in the magnitude-squared re- 
sponses of Figs. 10 and 11. The cut depth [Eq. (11)] 
and the skirt depth [Eq. (12)] must be squared to resolve 
with Figs. 10 and 1 1, respectively, 

absolute cut depth = 
1 - (1  - k )  _ k 

l + l l - k l  2 - k  

IHc(eJ~ 

1 + ( 1  - k )  2 - k  
resonator absolute skirtdepth - 1 + I1 - k I - k 

These depth equations are easily deduced from Eqs. (10) 
and (7) and are independent of  the center frequency. 

The center frequency is unequivocally determined by 
Eq. (10) for these cut, notch, resonator, and perfect 
resonator filters shown in Figs. 10 and 1 1. This center 
frequency corresponds to the peak or trough extremum 
of the magnitude transfer evaluated on the unit circle in 

; 0 ~ < k <  1 (11) 

; 1 < k ~ < 2  (12) 

Table 3. Control coefficient k for Fig. 9. 

k = 0 Notch, H,(z) 
0 < k < 1 Cut, He(z) 

k = 1 Yields Input signal 
1 < k < 2 Resonator, H b (z) 

k = 2 Perfect r e s o ~ o r ,  H~(z) 

the z plane. 
The ordinate axis is drawn at the lower half-power 

excursion frequency o h for the plots in Figs. 10 and 1 1. 
The half-power excursion frequencies (the two musical 
cutoff frequencies) are given for the cut, notch, resona- 

O" 1 

0.4 
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Fig. 10. Cut filter magnitude-squared responses for various values of k; Q = 2. 
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tor, and perfect resonators by the equations 

(1 + [3) 2 cos (t%) + , -  ([3 - 1)N/2(1 + [32) _ (1 + [~)2 cos2((Oe) 
cos (tOE, 0 = 2(1 + 13 z) (13) 

[3 = 1 - tan (toc/(2Q)) = 1 - tan(Ato/2) 
1 + tan (toJ(2Q)) 1 + tan(Ato/2) " 

(14) 

Given a particular center frequency, the all-pass lat- 
tice coefficient [3 [Eq. (14)] precisely controls selectivity 
(the filter Q [Eq. (1)]) for these cut, notch, resonator, 
and perfect resonator filters. 18 Whereas the lattice coef- 
ficient ~/ is a function only of to c as we see from an 
inspection of Eq. (10), here we see that [3 is a function 
of  both toc and Q as per our new definition of musical 
cutoff frequency, Eqs. (3) and (2). 

On the one hand, it is very good that we have discov- 
ered closed-form mathematical relationships describing 
how to modify the two lattice coefficients to control the 
musical filter parameters. But from a control standpoint, 
we would like to have a way to decouple the filter coef- 
ficients so that only one of  them governs the center 
frequency whereas the other governs only the selectivity 
parameter. (We almost have that in ~.) Later on we will 
see the Chamberlin filter topology, which nearly reaches 
that ideal. 

2.4.1 Regalia k Coefficients 
In [13] it was understood that a simple algebraic 

change in variable would result in a new design which 
substitutes the parametric boost filter for the resonator, 
hence incurring the loss of  the resonator and the perfect 
resonator. Employing the same topology as before, the 
coefficients in Fig. 12(a) are derived from those in Fig. 
9 via the substitution 

and via a scaling by the boost factor k on the output, 
but only when k > 1. The transfer function of  the circuit 
in Fig. 12(b) is identical to that in Fig. 12(a). By pushing 
the output coefficient forward, we simplify the other 
coefficient. 

The action of the control coefficient k is now charac- 
terized in Table 4 and illustrated in the magnitude- 
squared responses of Fig. 13. The cut depth [Eq. (16)] 
and the boost [Eq. (17)] must each be squared to resolve 
with Fig. 13, 

Regalia absolute cut depth = k ; 0 ~ < k <  1 (16) 

Regalia absolute boost = k ; 1 < k < oo. (17) 

l+k 
(a) 

112 

(b) 

Fig. 12. Cut, notch, or boost type filter. Transfer functions in 
(a) and (b) are identical. 

1 - k  
1 - k - - - ~ -  ( 1 5 )  

l + k  

is This equation for 13 is exact in terms of the selectivity 
definition, Eq. (1). 

Table 4. Control coefficient k for Figs. 12 and 14. 

k = 0 Notch, Hn(z) 
0 < k < 1 Yields Cut, He(z) 

k = 1 Input signal 
1 < k < oo Boost, Hb(Z) 

iHb(ejO))12 2 
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IHc(eJ('~ 2 
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Fig. 13. Cut and boost responses for various values of k; Q = 2. 
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These results can be derived by subtituting Eq. (15) 
into Eqs. (11) and (12). As before, these results are 
independent of the center frequency. The combined plot 
in Fig. 13 highlights the symmetry of the cut with the 
boost filters, hence, the symmetry of Q. 

In general, the parametric filters of Figs. 9 and 12 are 
minimum phase. From the all-pass characteristics [Eq. 
(7)] it can be deduced that, independent of center 
frequency, 

Regalia absolute skirt depth of boost filter = 1 

;1 < k < o o .  (18) 

The ordinate axis is again drawn at the lower half-power 
excursion frequency (the lower musical cutoff frequency 
too in Fig. 13. The two musical cutoff frequencies (o2,1 
for the boost filter are derived using a slightly different 
Eq. (19) as compared to that for the resonator [Eq. (3)]. 
But it can be shown that the results are the same as 
before, that is, Eq. (13) remains valid under 

I H b ( e J = ) 1 2  - 1 1 
[Hb(eJ=c)[ 2 -- 1 = 2 "  (19 )  

Unlike Eq. (3), Eq. (19) does not reduce to the tradi- 
tional definition of cutoff frequency because Hb(e joo) is, 
by definition, never zero. Because we were able to derive 
the Regalia k coefficients in Fig. 12 from the network 
in Fig. 9 while retaining the same topology, all the 
equations thus far remain applicable, that is, for [3, % 
to e , and 0 ) 2 , 1  . 

2.4.2 R e g a l i a - M i t r a  T o p o l o g y  

Fig. 14 shows the parametric filter topology originally 
presented ~9 in [13]. 20 Although our development led us 
to Fig. 12, the transfer function of the circuit in Fig. 14 
is identical. 

19 We moved to the input the originally internal scaling 
by t/2 in order to avoid subsequent overflow in a fixed-point 
implementation. 

2o Regalia and Mitra [13] also formulate the construction of 
first-order shelving filters using the same topology. In the audio 
industry, shelving filters are typically first-order designs. They 
are used to uniformly boost or cut selected portions of the 
high- or low-frequency region. They are called "shelves" be- 
cause their magnitude responses approach unity asymptot- 
ically. 

2.4.3 Latt ice Topology in Practice 
The foregoing filter topologies constructed from the 

all-pass lattice suffer two drawbacks to their implemen- 
tation: 1) the lattice produces spontaneous low-level au- 
dible zero-input limit-cycle tones, and 2) the lattice to- 
pology is prone to signal overflow at internal nodes 
before the all-pass output has reached full scale. 21 

The first problem is solved by magnitude truncation 
of 22 all lattice memory elements [9]. The second prob- 
lem is solved by scaling the lattice input, as already 
shown in Figs. 9, 12, and 14. When premature internal 
overflow persists (which is more likely for high Q, cut or 
boost), it becomes necessary to provide a user-controlled 
input-signal-level adjustment. 23 Compensation will be 
required at the filter output, under separate user control. 
Keep in mind that the cost of output amplification is the 
concomitant amplification of the filter's internal signal- 
truncation noise floor. So this input scaling process 
should be limited. 

As an alternative to the use of the all-pass lattice, we 
recall that the direct form I filter topology does not suffer 
from internal signal overflow. That is because its single 
accumulator has infinite headroom when used in a fixed- 
point implementation [12, pp. 857, 875] 24, [11, ch. 
11.3], [14, ch. 6.7.1]. In Fig. 15 we show an implemen- 
tation of the second-order all-pass filter [Eq. (6)] com- 
prising embedded direct form I first-order all-pass sec- 
tions. 25 This topology retains the dichotomy of the 
musical filter coefficients as in the lattice, while em- 
ploying the exact same coefficients, and avoids inter- 
nal overflow. 

Empirically we observe that the limit-cycle tones pro- 
duced by the direct form I are much quieter than those 
produced by the corresponding lattice in Fig. 7, in gen- 
eral. 26 Truncation error feedback (not shown) in the di- 

21 Conditional saturation is helpful but does not solve the 
problem because internal clipping sounds bad. In [ 11, ch. 4.3] 
a novel topology for the perfect resonator is shown. 

22 See Part 3, Section 9.2, Appendix 8. 
23 This knob is probably required anyway to counterbalance 

boosts at the filter output. 
24 Overflow is not always a bad thing. 
25 Conversion to direct form II using Rossum's technique 

[17] would eliminate some memory elements while providing 
automatic input scaling. The scaling is necessary to prevent 
internal overflow in that topology. 

26 The direct form I may require error feedback [12] to be 
truncation-noise competitive with the lattice, however. 

1/2 

Fig. 14. Regalia-Mitra topology. 
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rect form is known to further minimize limit-cycle oscil- 
lation [18], thus providing an alternative to magnitude 
truncation as a remedy. For both the lattice and the em- 
bedded direct form, stability is assured by < 1 and 

< 1. 

2.5 A p p e n d i x  2: Fi l ter  Errata in the Li terature 

A mistake has been perpetuated regarding the center 
frequency of the second-order digital filter. The polar 
representation of complex conjugate filter poles is often 
found, correctly written, as 

Zpole = Re -+j0 . (20) 

The erroneous hypothesis can be recognized wherever 
the filter's normalized center radian frequency (o~ is as- 
cribed to the radian pole angle 0. Hence, the distinction 
between center  frequency and pole  frequency is ob- 
scured in the literature. 27 There it is argued that for high 
selectivity, this distinction is of little practical impor- 
tance, but that tenuous assumption of practical equiva- 
lence has, consequently, promulgated specious theoreti- 
cal conclusions within the audio community. 

One such erroneous conclusion is that the perfect reso- 
nator transfer function [Eq. (5)], for arbitrary center 
frequency, does n o t h a v e  a peak magnitude exactly equal 
to 1 when evaluated on the unit circle in the z plane. 
The errant proof evaluates Eq. (5) at the resonant fre- 
quency (at z = e J~ in complete disregard of the pole 
radius R. Evaluation at the true center frequency (at z = 
e j=o) given by Eq. (10) shows that conclusion to be false, 
that is, it is true that the perfect resonator as given by 
Eq. (5) always has a peak gain of exactly unity. 

We can establish a correspondence between pole and 
center frequencies by equating the general denominator 
of  a second-order transfer function, written in terms of 
the pole radius and angle [Eq. (20)] [11, ch. 4.3], [12, 

27 The resonant frequency is that frequency at which a filter 
rings when excited by an impulse. The resonant frequency is 
the pole frequency, which is the same as the pole angle 0 in 
the z plane. The center frequency is the frequency at peak 
magnitude response in the steady state, when a filter is excited 
by a sinusoid of infinite duration. In general, center and reso- 
nant frequencies are not identical [19, ch. 5.5]. 

Eq. (27)], to the perfect resonator [Eq. (5)],2s 

HF(Z) = 
'/2(1 - [3)(1 - z -2) 

1 + ~/(1 + 13)z - l  + 13z -2 

q2(1 - fl)(l - z -2) 

1 - 2R cos (0)z- 1 + R 2 z -  2 �9 (5) 

Using Eq. (10), we can easily deduce the following 
identifications; 

• = R  2 

- 2R cos (0) 
~ / -  1 + R  2 = - c o s ( t % ) .  

This proves that the only instance where the center fre- 
quency ~o c would be the same as the second-order pole 
(or resonant) frequency 0 is for conjugate poles right on 
the unit circle (R = 1). But in that circumstance one 
has an oscillator, not a filter. 

These results can be extended to the resonator in gen- 
eral. Similar conclusions can be drawn from an examina- 
tion of the second-order all-pole transfer function [see 
Eq. (23)], and from the second-order all-zero transfer 
function, such as the one in Fig. 4. 

An instance where the center frequency is identical 
to the pole frequency is for the case of  the first-order 
resonator. The equivalence is independent of  pole radius 
R, unlike the second-order case. This instance may be 
the reason for the propagation of the erratum regarding 
the second-order case. The transfer function of the first- 
order resonator is 

1 - R  
Fr(z) - 1 - ReJOz- 1 �9 

This filter has only one pole. But notice that the one filter 

28 The poles occur in complex conjugate pairs when the filter 
coefficients of z (that is, ~/ and 13) are real. When the filter 
coefficients are real, then it is easily shown that the filter's 
impulse response must also be real. 

X(z )  13 Y(z )  

Fig. 15. Embedded direct form I, second-order all-pass filter. 
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coefficient is complex, in general. Hence the impulse 
response of  this filter cannot be real. One may surmise 
that there must be some interaction among multiple poles 
in the z plane, which destroys radial symmetry. 

3 C H A M B E R L I N  F I L T E R  T O P O L O G Y  

Next we consider high-fidelity musical filtering using 
a different topology and the musician's  all-pole low- 
pass filter type. We apply our earlier redefinition of 
cutoff frequency, in terms of half-power excursion, to 
this new construction, which establishes a tie to our 
previous work. 

The musician's  all-pole filter has antecedents in the 
electronic music industry, 29 appearing in currently re- 
nowned and vintage music synthesizers [22]. The filters 
we considered previously had zeros in the transfer func- 
tion. We were concerned about the control of  those filters 
as a musician might like to control them. Here we present 
an additional goal; namely, to come up with filter coef- 
ficients where each will control individually only center 
frequency or selectivity (filter Q). To do so, we rederive 
the Chamberlin [23] all-pole (two-pole) low-pass filter 
topology entirely from the perspective of the discrete- 
time domain. 30 

We argue that the truncation noise performance of 
the Chamberlin filter topology is very good, although 
practitioners have known that for years. 31 In so doing 
we introduce a new more musical and conservative mea- 
sure of noise performance that we call "transparency," 
and which we denote criterion 1. Using a more tradi- 
tional approach, denoted criterion 2, we compare the 
truncation noise power observed at the Chamberlin filter 
output to the input-signal quantization noise power, 
which can be construed as the noise gain. We discover 
that for the Chamberlin topology, the worst noise gain 
is the same as the peak gain squared of the whole filter 
acting upon the input signal. That turns out to be the 
reason why the noise performance is so good. 

3.1 S h a p e  of  the  Mus ic ian 's  L o w - P a s s  Fi l ter  

The electronics engineer 's  low pass has zeros in the 
stopband and is very fiat in the passband. 32 The stopband 

29 The classic Moog analog synthesizers, for example, em- 
ployed fourth-order all-pole voltage-controlled filters (VCFs). 
His constant-Q design was also known as the Moog ladder, 
after the appearance of the schematic [20]. A cascade of two 
Chamberlin filters can be considered as the digital counterpart 
to  the Moog VCF because some of the same characteristics 
are shared. They are both all-pole constant-Q designs tuned by 
a single sweepable parameter. Rossum [21] of Emu considers 
essential nonlinear ingredients to make digital filters sound 
more "analog." 

3o This filter was originally derived from an analog state- 
variable filter by application of the impulse-invariant trans- 
formation.. 

31 The Chamberlin all-pole design is a reputed resident 
within the contemporary digital synthesizers by Peavey and 
Kurzweil. 

32 The Butterworth filter, for example (which is a good 
choice for audio with regard to minima/ringing), has all its 
z e r o s  at Nyquist. 

zeros serve to provide high attenuation there. In contrast, 
musicians have a taste for peaked filters, even when the 
desired filter is of the low-pass variety. Because the 
musician's peak-center frequency is typically quite low 
(requiring poles closer to the unit circle), zeros are 
largely unnecessary due to the relatively high attenuation 
at frequencies far away from the low-frequency poles. 
When the peak-center frequency is high, on the other 
hand, the stopband excursion of the all-pole filter magni- 
tude response may not span 3 dB. In fact, when the 
peak-center frequency reaches "rr/2, the all-pole low- 
pass filter ceases being low pass because the magnitude 
response at "tr starts to exceed the response at dc. 

Due to the fact that the Chamberlin filter is all pole, 
there is little control over the rate of  transition from 
passband to stopband. To increase the transition rate of  
the low-pass filter, the accepted solution is to cascade 
an identical all-pole filter. This works in practice be- 
cause the musician's working range of the low-pass 
peak-center frequency is much less than r for reason- 
able sample rates. Zeros placed at the Nyquist fre- 
quency, for example, would have little impact over the 
musician's working range. Therefore the cascade is pre- 
ferred to zeros at Nyquist. Zeros elsewhere in the stop- 
band region would entail more computation, hence they 
are undesirable. In this development,  we will consider 
only a single filter section. 

We expect some kind of boosting response, as shown 
in Fig. 16. The corresponding transfer function must be 
at least second-order to get the peak center away from 
dc. Notice that the filter is normalized to unity at dc.  33 

Once again, we must refine our notion of cutoff fre- 
quency by relating it to half-power excursion, as before. 
For this filter type, we define the passband excursion 
from the value of the magnitude-squared response at dc 
to the peak value of the response. Reminding ourselves 
that this magnitude-squared response is periodic in 2~r, 
we then similarly define the stopband excursion from 
the peak to the value at Nyquist. 34 In Fig. 16 the half- 
power excursion points are indicated, defining the musi- 
cian 's  bandwidth of the all-pole low-pass filter. 

We find the frequencies of  the half-power excursion 
points (the musical cutoff frequencies) here much like 
we did before: the passband half-power excursion fre- 
quency is found solving Eq. (21) for to, 

IHchx(eJ=)l 2 -  1 1 
IHchx(eJ=o)12 -- 1 = 2 "  (21) 

We call this frequency to1- Similarly, we call to2, the 
solution to Eq. (22) for the half-power excursion in 

33 To bring the boost at the peak-center frequency to e down 
to unity, additional scaling is required beyond what we recom- 
mend here. 

34 The electronics engineer's transition band and stopband 
are merged in this development. Because of the lack of zeros 
here, the electronics engineer's boundaries are not as clear. 
Also, the electronics engineer would measure bandwidth from 
de, unlike our measurement. 
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the s topband,  

[H~hx(eJ=)12 -- IH~h~(-- 1)12 = _I 

[Hchx(e-i'o)[2 -- IHchx(- 1)12 2" 
(22) 

Nei ther  of  these two cutoff  f requency definitions [Eqs. 
(21) and (22)] reduce to the traditional definition because  
none o f  the terms can go to zero in this all-pole design. 

3.2 Transfer Function Development 
We begin with a s impler  second-order  transfer  func- 

tion having no zeros,  so we can expect  some of  the 
previous ly  discovered equations to be different,  

at 
Hehx(Z) = 1 + hz -1 + 13z -2"  (23) 

At the peak-center  frequency the magni tude-squared 
response reaches its peak  height. Exact ly ,  

40t213 
m~x[iHchx(eJ~O)12 ] -  I I = (13 _ 1)2(413 _ k z) 

a2(1 + 13)2 

= (13 - 1)211 + 132 -- 213 cos (2to~)] " 
(25) 

For the low-pass  filter we normalize  the t ransfer  function 
to unity at de, so ct becomes  

ct = 1 + h + 13. 

The two musical  cutoff  frequencies were  determined 
exact ly,  using Mathemat ica  [24],35 as 

COS ((02,1) = COS ((t)c) -[-, 
cos 2, sin 2 (o~d2)(13 - 1) %/211 + 132 _ 213 cos (2c%)] 

%/1 + 13 + 8[32 + 133 + 134 -I--,-- 413(1 + 13)Z COS (tOe) -- 13(1 -- 6[3 + 132)COS (20~ c) 
(26) 

We seek the relat ionship of  the ideal coefficients h and 
13 to the peak-center  f requency o~ and selectivity Q, 

[ - ( 1  + 13)h] (24) 
to e = arccos 413 " 

I f  we express  h as 

k -  413~/ 
1 + 1 3  

then we find the s impler  expression for peak-center  
f requency,  

~ = arccos ( - ' y ) .  (10) 

We were not able to determine an exact  expression for  
the 13 coefficient in terms of  toe and Q as we did for ~/, 
but the fol lowing guess turns out to be a good 
approximation:  

1 - sin ( toJ(2Q)) 
[3 ~ 1 + sin (~%/(2Q)) " (27) 

The plot in Fig. 17 shows that our expression for  13 
is good over  the r ecommended  operat ing peak-center  
f requency range of  to c -- 0 to "rr/2. To make  this plot,  
we substitute the desired Q into the exact  equations for  
to2 and (o 1 [Eq. (26)] using the approximat ion to 13 [Eq. 
(27)], and then we sweep over  to c. I f  we had the exact  
expression for  13, then the sheet would be a taut plane 
having unit slope with respect  to the desired Q. But the 

This equat ion for  the center  frequency is the same as 
before ,  and both Eqs.  (10) and (24) are exact.  

35 The extensions of Mathematica [25] to analog and digital 
signal processing are highly recommended. 

IHchx(CJ00) 12 
2 peak2 = 1.961444 

1 .5  (0631012, 1 ~ 2 2 )  ~ 

defining bandwidth k 
O. 5 

O-~e = 1 
skirt depth 2 -- 0.166305 

0.5 1 1.5 2 2.5 3 

Fig. 16. All-pole low-pass magnitude-squared response. 

(0 
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approximation Eq. (27) is far better than some others in 
the literature [26]-[28] ,  [15, ch. 2-111, p. 123]. The 
largest percentage errors in the recommended center fre- 
quency range are for a desired Q of 1, having error 
maxima of 21.8 to 27.6%. 

3.2.1 Approximations 
To achieve our stated goal of obtaining filter coeffi- 

cients that control center frequency or filter selectivity 
individually, we now make series approximations to our 

the z -2 coefficient in Eq. (23) are 

1 1 
1 3  1 - + - - -  

~d z~d-  

5 3 +  1 4 
24Q3 0% 1 2 ~  0% 

61 5 + 
1920Q5 o~c �9 �9 �9 . 

These series are hard to predict. The Mathematica script 
used to generate them is 

beta = (1 - Sin [wc/(2 Q)]) / (1 + Sin [wc/(2 Q)]) ; 
Simplify [Series [Simplify [Factor [ - 4  beta Cos [wc]/(1 + beta)]], {wc, O, 5}]] 
Series [beta, {wc, O, 5}] 

expressions for the ideal filter coefficients we have found 
thus far. Using the good approximation Eq. (27), we 
find that the first several terms of the equivalent Maclau- 
rin series for the z-1 coefficient in Eq. (23) are 

~ 0 c -- ~0 c + O) c 

Fig. 18 shows the musical filter topology 36 that imple- 
ments a truncated series approximation to the ideal filter 
coefficients, hence decoupling somewhat the control of 
c% and Q. Fig. 18 incorporates the first three terms from 
the h series and the first two terms from the 13 series. 
Thus the coefficient F~ is identified with co~ while the 
coefficient Qc is identified with 1/Q. Because the circuit 
implements so few terms from the 13 and X series which 

 4(1 ) 
+ ~  ~  2 - ~  + + 19 (23 ~% " ' "  

and the first several terms of the Maclaurin series for  

36 We adopt Chamberlin's nomenclaure [23]. Chamberlin 
points out that this filter topology simultaneously possesses a 
high-pass and a band-pass output at the nodes labeled hp and 
bp, respectively. We discuss only the low-pass filter function 
lp of this circuit in detail here. 

lq 

desired 

OY,, 

.5 
mc 

Fig. 17. Actual all-pole filter Q as a function of center frequency and desired Q. 

X ( z ) - - - ~  hp F~ b Fc Y(z) 

i 

Fig. 18. Chamberlin topology, second-order all-pole filter. Input scaling by 1/2 and output compensation not shown (see Sec- 
tion 3.3.6). 
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are themselves approximations due to Eq. (27), these 
stated identities are crude. We refine the approximate 
relation of Fc to o~r in Eq. (29), but we will leave the 
circuit in Fig. 18 as it is. After we characterize the circuit 
a little more,  we will find that the filter coefficients in 
the figure provide sufficiently autonomous control for 
musical purposes. 

The all-pole low-pass transfer function of this further 
approximation to Eq. (23) in Fig. 18 is 

nch(Z) -- 
Y(z) F~z- t 
X(z) 1 - (2 - FcQ ~ - F~)z - l  + (1 - FcQc)z -2 

redefining 

k = - ( 2  - FcQ~ - F 2 ) ,  [3 = 1 - FcQ c (29) 

where 

Fe ~- 2 sin r ad ,  Qc = ~ .  

The transmogrified numerator of  Eq. (23) now shows a 
delay operator in Eq. (28). This comes about because 
of the need to eliminate an otherwise delay-free loop in 
the circuit of  Fig. 18. 37 The numerator coefficient o~ has 
become F 2 to force Eq. (28) to unity at dc (z = 1), as 
stipulated. This refined approximation to F~ in Eq. (29) 
is from [23], [26]; it becomes more exact for high Q. 
When the peak-center frequency t% is low and Q is high, 
Fr in Eq. (29) reduces to t%. [An exact expression for 
Fr is given by Eq. (31).] 

3 , 2 . 2  Stability~Parameter Decoupling 
The stability of  complex conjugate poles demands 

the constraint 

0~< (1 - FeQ~) < 1 . 

Restated, 

1 (30) 0 < F ~  < -  . 
a~ 

This condition is ascertained from Eq. (28) by de- 
manding a pole radius 38 of magnitude less than 1. 

From previous considerations we presume that the tun- 
ing range for the all-pole low-pass filter is 

,IT 
~ > ~ o ~ > 0 .  

I f  we substitute Eq. (29) into the equation for the actual 

EFFECT DESIGN 

peak-center frequency o~ [Eq. (24)] in this range, we 
discover in Eq. (31) that Fr and Qc are not completely 
decoupled, 39 except for very high selectivity (Q~ ~ 0), 

0 < cos (toe) = 

3 
4(1 -- F~Q c) - F~(2 - a~) + F~Q~ ~< 1. (31) 

4(1 - F~Q~) 

z-  1H~hx(Z ) (28) 

The identity in Eq. (31) is exact. Further, we find on 
the right-hand side inequality that 

2 
F c < ~ c - Q ~  

and on the left-hand side, 

F c < 
- Q ~ +  %/8 + Q2 

From the stability condition Eq. (30), the minimum 
value of Fc is zero. This is achieved for the right-hand 
side inequality of  Eq. (31) when Qr reaches ~v/2. Thus 
we have an upper bound on Qc to keep the actual peak- 
center frequency within the prescribed tuning range, 

0 < Qr < ~v/2. 

To maintain complex conjugate poles in Eq. (28), 40 
we find that the following inequality holds: 

0 ~  (F~ + Qc) ~< 2 .  

This is found by rooting the denominator of  Eq. (28), 

F2z-  1 
Hob(Z) = (1 -- az- l ) (1  -- a*z -1) (32) 

where 

a = 1 Fc(F~ + Q~) + jFr (F~ + o'~..r 
2 u 4 

Using the upper bound we found for Qc, we see that 
there will always be some finite range of F c over which 
the poles will be complex conjugate. 

37 It is remarkable that the delay-free loop is eliminated 
without compromise to the digital filter coefficients, because 
delay-free loops can be troublesome when it is desired to main- 
tain autonomy of the coefficients in an analog-to-digital fil- 
ter transformation. 

3s See Eq. (5) in Section 2.5, Appendix 2 to find the pole 
radius. 

39 A similar conclusion can be reached by solving Eq. (27) 
for Q in terms of Fc and Qr via Eq. (29); we leave that for the 
reader. But note that Eq. (27) is an approximation whereas 
Eq. (31) is exact. 

~0 That is, for peak-center frequency away from but asymp- 
totically including de. 
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Combining all three criteria, we finally conclude that 
to maintain a stable low-pass filter in the form of Eq. 
(28), having complex conjugate poles conforming to the 
prescribed tuning range, then the constraint must hold: 

2 
0 < F~ < rain 1 , 2 - Q ~ , ~ - Q r  

03) 

We learn from Eq. (33) that an artificial upper bound 
on the value of  Qr equal to 1 yields a universal upper 
bound on Fr equal to 1 as well (corresponding to toe of 
about ,rr/3). We conclude that we can guarantee stability 
of complex conjugate poles for any value of either filter 
coefficient as long as they individually remain within 
the range of 0 ----> 1. 

3.2.3 Peak Gain 
We examined the actual peak gain of H~h(e j'~ (evalu- 

ated at o~) over the prescribed ranges of Fc and Q~ (both 
0 --> 1) substituting the truncated series approximation 
coefficients [Eq. (29)] into Eq. (25), then taking the 
square root. We found the peak gain to be greater than 
but approximately equal to 1/Qr The largest excess be- 
yond this estimate occurs for low center frequency and 
low Q, or for high center frequency and high Q. At 
Fr = 0.000001 and Q~ = 1 we found the greatest excess 
at about 15.5% more than 1/Q~. 

There is no separate control over peak gain in the 
Chamberlin topology; it is controlled indirectly through 
Qc. We recommend a maximum peak gain of  24 dB for 
musical purposes, corresponding to a minimum Qc of 
about 0.0625 (filter Q = 16). 

3.3 Performance of the Chamberlin Filter 
Now we wish to know whether our approximations 

are good enough. To do this, an engineer might calculate 
the root locus of the Chamberlin poles to see how closely 
their trajectory matches that of a second-order constant- 

Q filter. Instead we will repeat the musical analysis, as 
in Fig. 17, relating Q and center frequency; but this time 
we will not use the ideal coefficients. Rather we use the 
actual filter coefficients given by the truncated series 
approximations in Eq. (29). 

Specifically, the radian frequencies <o c, to 2, and o~ 1 in 
Fig. 19 are calculated using the actual filter coefficients, 
evaluating Eq. (31) to get o~ c, and by substituting the 
truncated series approximation for 13 [Eq. (29)] into Eq. 
(26). Fig. 19 tells the whole story by relating actual 
filter Q [Eq. (1)] to the filter coefficients. Ideally, we 
are looking for a planar relationship. Nonetheless, the 
sheet is fairly unwrinkled up to Fc ~ 1, corresponding 
to a tuning range of peak-center frequencies up to "tr/3. 
Further, it appears that for our purposes the selectivity 
parameter control Qc is sufficiently decoupled from the 
tuning frequency control F c. Hence we can expect good 
agreement between theory and practice in that region. 41 

3.3.1 Integrator Analysis 
Generally speaking, it is not a good idea to implement 

an ideal digital integrator unless it can be guaranteed 
that there exists a zero of transmission across it at dc. 
This is certainly the case for integrator 1 in Fig. 18, 
which has the required zero across it, but integrator 2 
has no such zero. In that case one must then prove that 
there can exist no signal from any source having dc 
content upon arrival at the input to the integrator under 
scrutiny. Audio signals normally enter the digital circuit 
at the designated input node, but noise having dc content 
is routinely generated in any practical implementation at 
every node where signal truncation occurs. These noise 
sources often appear in contemporary DSP chips at the 
input to each multiplier because multiplier inputs cannot 
accommodate double-precision operands the way the ac- 

41 At a sample rate of 44.1 kHz, w/3 corresponds to a band- 
width of 7350 Hz. Considering that the topmost note of the 
pianoforte reaches only 4186 Hz, that tuning range is good 
enough for musical purposes. 

678 

0 

1/Q c 

2 
Fc 

Fig. 19. Actual Chamberlin filter Q as a function of F c and 1/Q c. 
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cumulators can. 42 The high-rate noise is accurately mod- 
eled as a deterministic source [12, Eq. (6)], input to a 
fictitious adder resting in front of the multiplier. Fig. 20 
demonstrates the application of the noise model to one 
of the noise sources (e2) on its way to integrator 2. 

For the Chamberlin topology we have the remarkable 
result that the input to integrator 2 never sees any signal 
having dc content. For verification, we now look at the 
most interesting signal, which is the noise source at the 
input to the multiplier at node bp. There we have 

12(z)  _ 

e 2 ( z )  

F~ 1 - (2 - FcQ~)z -1 + (1 - F~Qc)z -z  
A 

(34) 

where A is the denominator of  Eq. (28). The transfer 
function (34) has a zero of transmission at dc, which 
can be proven by substituting z = 1. The three other 
possible sources (at nodes hp, bpq, and the filter input) 
acquire a simple zero of transfer at dc in the form 
1 - z -  1 by the time they arrive at 12. 

3.3.2 Truncation Noise; Spectral Criterion 
The object of our noise analysis is to find the internal 

truncation noise generated by the circuit itself, which 
then appears at the observed output. The design goal of 
fidelity might be stated as follows: 

Criterion 1: It is desired that the filter circuit generate 
no truncation noise appearing at the filter output which 
would fall above the spectral noise floor due to quantiza- 
tion of the original input signal. 

Under this criterion it would be a violation for any 
portion of  the truncation noise spectrum created by the 
filter itself to fall above the presumed spectrally white 
quantization noise floor of the input signal. Hence this 
criterion is the more conservative of the two criteria for 
fidelity that we will consider. Under this musical and 
spectral interpretation of fidelity, the filter is then termed 
transparent to the input signal. 

Because the noise we are studying is deterministic 
(the sources are known), when it occurs early in a filter 

42 We presume no truncation post-accumulation for these 
integrators. This presumption is justified based on the alterna- 
tive, which is a leaky integrator, requiring a multiply in its 
loop. 

ez[n] 

- ~ .  Fc 
to  

Fig. 20. Truncation noise source model (Appendix 8). 

topology it undergoes filtering as does the signal itself. 
Using the truncation noise model described for the integ- 
rator analysis, we then need to know the transfer func- 
tion from each of the internal noise sources to the low- 
pass output. Having obtained this information, we can 
predict the frequency-dependent amplification of each 
presumably wide-bandwidth noise source. 

We assume that all internal truncation occurs at the 
same bit level. Suppose, for example, that internal noise 
due to truncation were being generated at the 20-bit 
spectral level. Then any given noise magnitude response 
would need to possess at least a 24-dB boost beyond 
unity (in any frequency region) before criterion 1 were 
violated, assuming 16-bit input signal fidelity and a 
spectrally fiat signal-quantization noise floor. 43 

Like the one shown in Fig. 20, there are three noise 
sources arising due to truncation at each of the respective 
multiplier inputs. These nodes are labeled hp, bpq, and 
bp in Fig. 18. 

1) hp: The noise transfer function from hp to the 
output is --Hch(Z ). This means that the noise transfer 
from hp is the same as the signal transfer (with sign 
inversion), which is certainly not a bad situation. This 
source is the largest of the noise contributors when ob- 
served from the filter's low-pass output. 

2) bpq: The noise transfer from bpq to the output is 
QcHeh(Z). We know that the peak gain of Hch(e jc~ is 
approximately 1/Q~, which means that the peak of this 
noise magnitude response from bpq is about 1. This 
is good. 

3) bp: Lastly, we consider the noise transfer from 
bp to the output, which can be written 

1 - z -1 Q~) H~h(Z) 
_ Fcz-  I 

When filter Q is high, the first term introduces a zero at 
dc (but only to the noise), which is exactly what happens 
when we employ first-order truncation error feedback 
[12]. The zero squelches the noise in the low-frequency 
region, but boosts it in the high-frequency region. Using 
Eq. (29) we find that the crossover point (the frequency 
at which I1 - z-ll/Fc = 1) ,  above which the 1 - z -1 
term begins to boost, is approximately r In this partic- 
ular circumstance, the second-order low-pass filter 
H~h(Z ) kicks in above 00 c to remove the boosted noise. 
Hence the center frequency and peak gain of this noise 
source are about the same as that of hp, for high Q. 

Summarizing the three noise sources, the noise source 
at hp would demand 1 extra bit in the filter signal path 
for every 6 dB of peak gain at the filter output (Section 
3.5, Appendix 3), because node hp sees the same gain 

43 (20 -- 16 bits) • 6 dB/bit = 24 dB. Another way of 
looking at this example would be to say that under fidelity 
criterion 1, four extra bits beyond 16 would be required in the 
filter signal path to maintain filter transparency if any one of 
the noise magnitude responses were capable of a 24-dB gain 
in any frequency region, that is, 1 bit for every 6 dB of gain 
beyond unity magnitude response. Refer to Appendix 3 in 
Section 3.5 for supporting noise concepts. 
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as does the input signal. The noise source at bpq is 
insignificant when compared with the other two. Node 
bp is much like node hp. We finally determine the re- 
quired total number of  extra bits as an uncorrelated sum 
of  the respective peak gains; 

~-log2V'l + (162 + 12 + 162) = 4.5 bi t .  

So for a recommended maximum peak gain of 24 dB 
(16 absolute) across the filter, under criterion 1, five 
more bits would be required in the single-precision sig- 
nal path. 

3.3.3 Truncation Noise; Power Criterion 
What we have thus far are the deterministic noise 

transfer functions, which were of interest because of the 
way that the first criterion for fidelity was stated. The 
design goal of fidelity has a second, quantitative (statisti- 
cal) interpretation which is stated as follows: 

C r i t e r i o n  2" It is desired that the truncation noise 
power generated by the filter circuit, observed at the 
filter output, be less than the noise power due to quanti- 
zation of the original input signal. 

Here we compare internally generated truncation noise 
power observed at the filter output to the signal- 
quantization noise power observed at the input. This 
criterion is a classical high-rate interpretation, 44 ubiqui- 
tously ascribed as the - 6 - d B  average noise power per 
individual bit [14, ch. 3.7.3]. We begin by assuming 
that the number of bits in the filter's single-precision 
signal path is the same as the number of bits representing 
the input signal. We then determine the number of extra 
bits required in the signal path to maintain input signal 
fidelity using this criterion. To do so we must calculate 

what is commonly termed the noise gain [29, ch. 9.2.2]. 
This is essentially an estimate of  the total power boost 
of the internally generated, presumed spectrally white 
noise. Any boost beyond unity is bad news, whereas 
any gain of unity or less is good. 45 The calculation of 
noise gain is often performed in the frequency domain 
exploiting the Parseval energy relation [Eq. (35)], which 
integrates the magnitude-squared response of a noise 
transfer function, 

oo 1 1 2~r 
G= ~ Ih[n]la--~j0 In(eJ=)ladto. (35) 

n= -oo 

Hence the result of the calculation is unitless since the 
integrand is a ratio. From the noise transfers we know 
that the worst offender is due to the noise source at hp 
in Fig. 18. Substituting the poles of that transfer [Eq. 
(32)] into the integration results from [14, ch. 4.7, p. 
187; ch. 6.9.1, p. 357], we calculate the noise power 
gain at hp as 

F4{a[1 - ( a * )  2] - a * ( 1  - a 2 ) }  

Ghp :" (a - a*)(1 - a2)[1 - (a*)2](1 - aa*)" 
(36) 

The vertical axis in Fig. 21 represents Ghp evaluated 
over the recommended operating ranges of F c (0 ---> 1) 
and Qc (1 --~ 0.0625). There is zero noise gain for Fr = 
0, because the filter is shut down at that point. We see 
that the worst noise power boost occurs at hp, for high 
center frequency and high Q, where Ghp reaches 
10.7826, which translates to 1.8 bit, 

10 log (1 + Ghp) = log2 V1- + Ghp 
20 log 2 

= log2N/l + 10.7826 bit .  

44 The term "rate" here refers to the number of bits per 
sample. 

45 A noise gain of 1 says that the noise transfer function 
will not increase the amount of noise that it passes, but says 
nothing about the spectral distribution of the noise passed. 
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Fig. 21. Showing Ghp only where it exceeds unity. 
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Gbp looks much like Ghp. The aggregate of the noise- 
power gain contributions, corresponding to all the pre- 
sumably uncorrelated noise sources in the circuit of  Fig. 
18, is calculated simply as the s u m Ghp d- Gbp q -]- Gbp 
when all signal truncations occur at the same bit level. 
This sum demands 2.2 bit, worst case as above: 

log 2 X/1 + Ghp + Gbp q + Gbp 

= log2X/1 + 10.7826 + 0.0421196 + 10.4769bi t .  

We conclude that the aggregate requires a total of three 
extra bits (beyond the desired fidelity) in the filter signal 
path to maintain fidelity in accord with criterion 2. 

3.3.4  Truncat ion N o i s e  S u m m a r y  

From the perspective of  either criterion, the all-pole 
low-pass Chamberlin topology looks very good from the 
standpoint of  truncation noise performance. This is true 
because the pole gain, which is the determinant of noise 
gain in general, does not exceed the desired filter peak 
gain for the Chamberlin topology; the maximum pole 
gain is the maximum peak gain, which we recommend 
to be 24 dB. 

3.3.5 Limit-Cycle Oscillation 
Zero-input limit cycling arises due to ongoing signal 

quantization within a recursive topology [ 11 ] - -  a nonlin- 
ear operation in an otherwise discrete linear system. 46 
The quantized filter coefficients are parameters to limit 
cycles, but are not the cause. Limit cycles manifest them- 
selves as annoying low-level tones at a circuit 's outputs 
after input signal has been removed. Signal quantization 
in most modern DSP chips often takes place at the single- 
precision multiplier inputs where double-precision op- 
erands cannot be accepted and so must be truncated. 47 
The limit-cycle tones can therefore be visualized to enter 
the topology at the same places as the truncation noise. 
One such input port is shown in Fig. 20. Similarly to 
the truncation noise sources, if limit-cycle tones occur 
early in a filter topology they will be filtered just like 
the signal (at the same point of entry) itself. 

In the decade just passed, we have learned that limit- 
cycle oscillation is minimized by truncation error feed- 
back [ 18], which was devised to minimize the amplifica- 
tion of truncation noise [ 12]. Essentially, error feedback 
introduces zeros strategically placed on the unit circle 
into the noise transfer function, but leaves the signal 
transfer function alone. Therefore, a reasonable hypoth- 
esis is that with or without error feedback, if the noise 
transfer from a quantizer to the low-pass output has a 
term 1 - z -1, then it provides some immunity to limit 
cycles as well as some squelching of truncation noise, 
both artifacts caused by that same quantizer. 48 From our 

Signal quantization converts a discrete-time system to a 
digital system. 

47 Multipliers then produce double-precision results, which 
are usually fed to accumulators that can accept double-preci- 
sion inputs. 

truncation noise analysis of  the Chamberlin topology 
we see that only one of the truncation noise transfers 
(bp) has such a term. Hence limit-cycle tones cannot 
be completely ruled out, although empirical ly we do 
not recall overt  problems with the circuit behavior  in 
that regard. 

We have relaxed the mathematical rigor in this section 
because limit-cycle analyses for arbitrary topologies are 
analytically difficult, in general. The question remains 
as to whether limit cycles are a serious problem for the 
Chamberlin topology. Further analysis is certainly called 
for. In the meantime we design for the worst case. So 
our recourse is to minimize the potential tones'  ampli- 
tudes of  oscillation by providing internal signal trunca- 
tion at lower bit levels. That is tantamount to providing 
a higher precision signal path. A good rule of  thumb is 
that there exist about 6 dB of limit-cycle suppression 
for each appended bit of  precision. 

3.3.6 Signal Overflow Analysis 
The study of overflow is concerned with the observa- 

tion of the signal magnitude at sensitive nodes. Typi- 
cally, one or several sensitive internal nodes may over- 
flow (or underflow) sooner than the output. A saturation 
nonlinearity clips (appropriately full-scale positive or 
negative) the overflowed node, as this is highly prefera- 
ble to a two's  complement wraparound nonlinearity. The 
audible consequence of clipping at internal nodes is 
much more objectionable than clipping at the filter out- 
put, however, so it must be precluded completely. The 
sensitive internal nodes are, once again, the multiplier 
inputs because they typically cannot accept overflowed 
inputs like the accumulators can. 49 These are labeled hp 
and bp in Fig. 18. 

In our overflow analysis, what we are really interested 
in is the relationship of the sensitive nodes to the output. 
So we form a ratio R of transfers to the sensitive nodes 
with respect to the transfer to the output node. 

1) Node hp: Formulate [Eqs. (28) and (29)] 

Rhp(Z ) - -  

hp(z)/X(z) _ ( 1  - z-1)2 
H~h(z ) FEz - l  

_ sin 2 (o)/2) 
[Rhp(eJ'~ sin 2 (o~J2) " 

This describes a boost over the output at high frequen- 
cies. The worst case of overflow comes at the highest 
frequency (z = - 1) and for a peak-center frequency r c 
at the top of its utmost recommended range (~/2), for 

48 In fact, Laakso et al. [30] show that any zero in the noise 
transfer function provides some limit-cycle immunity. The 
common solution to both artifacts suggests that the two phe- 
nomena are homologous. 

49 Recall that most contemporary fixed-point accumulators 
are designed to tolerate infinite intermediate output overflow 
simply by virtue of nonsaturating adders [11, ch. 11.3]. So 
saturation at an accumulator output (when necessary) is never 
performed upon intermediate accumulated results. 
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there the boost over the unity output is by the factor 2. 
2) Node bp: Formulate 

bp(z)/X(z) (1 - -  Z - 1 )  

Rbv(Z ) -- Hch(;~ ) Fc 

= sin (o0/2) 
IRbp(eJ'~ sin (o0c/2) " 

Similarly, the worst-case boost over the output is abso- 
lute ~/2. 

Based upon this analysis, a simple technique to elimi- 
nate internal signal overflow, which we have found 
works quite well, is to precede the Chamberlin topology 
with a fixed input level attenuation of 1/z and to follow 
with a compensation factor of 2 at the output. The output 
compensation amplifies the filter's internally generated 
truncation noise, however, that is, the ratio of the input 
signal power to the filter's own noise power degrades 
by 6 dB. 

As shown in Fig. 16, the Chamberlin low-pass filter 
is a boosting filter. For some input signals the low-pass 
output may overflow. But overflow at the output will 
not always occur because the filtered signal may not 
have significant energy in the frequency region of the 
boost. Further, some small amount of  clipping at the 
output is not offensive to the musician. Hence is it not 
desirable to automatically normalize the filter peak gain 
for the musician by attenuating the input signal because 
there will be an objectionable loss in perceived volume. 
For then, the musician would demand a knob for output 
compensation. Such a knob is emphatically discouraged 
because of the consequent amplification of internally 
generated truncation noise. 

The most viable solution to the output overflow prob- 
lem is to provide a filter input signal level user control. 
The user then determines at what input level any clipping 
at the output becomes offensive. When an input level 
user control exists for a boosting filter, it becomes un- 
necessary to provide user-controlled output compensa- 
tion to maximize the output signal level. 

3.4 Estimate of Signal Path Width 
The 21-bit path-width estimate given in Table 5 main- 

tains input signal fidelity of  16 bits at the Chamberlin 
low-pass filter output under criterion 2. The filter inter- 
nal signal path width can be minimized by reducing the 
maximum peak gain or by compromising the bit-fidelity 

requirement. Note that under the more conservative fi- 
delity criterion 1, the estimate of  the required total num- 
ber of  bits in the filter signal path becomes 23 (n = 5, 
r = 0). 

The integrating accumulators must retain double pre- 
cision feedback to maintain stability. 

3.5 A p p e n d i x  3: T runcat ion  No ise  Spectra l  Level  
versus  No ise  P o w e r  

We seek the relationship of the truncation noise power 
spectral level In(eJ=)12/M to the noise power N because 
we wish to prove that for every additional 6 dB of S/N, 
the average noise spectral level drops by the same 
amount. The analysis of truncation noise is much like 
that of quantization noise [14, ch. 6.9.1, p. 353]. It 
is interesting that the classical high-rate estimation of 
quantization noise [14, ch. 3.7.3] is statistical in nature, 
hence does not include the actual sample rate F s in its 
quantification. We therefore expect our final result to 
reflect this. 

Here we regard truncation noise as deterministic so 
that it has an integrable spectrum, and we note that a 
discrete unity-level complex sinusoid of any duration 
and frequency has finite power S = 1. We then pose 
the problem: given 10 log (S/N) = 96 dB, 5~ input signal 
duration equal to M samples, and input signal power S = 
1, find the average truncation noise power spectral level 
"q21M in relation to the noise power N. 

We easily find the noise power, solving 

10 log (N) = - 9 6  

where 

N =  T ("~ In(eMYr)12 d Y e 0  - -  = 2-~ j 0 1  (2= I'q(eJ=)12M do0 

(37) 

where ~o = 2~rfT throughout this paper. Eq. (37) 51 is 
a statement of  noise power versus noise power spectral 
level, where T = 1/F s and M is the number of  samples 

50 The approximate expected signal-to-noise ratio for a 16- 
bit fidelity signal is 96 dB (6 dB per bit) [14, ch. 3.7.3]. 

51 Scaling of the Parseval energy relation [Eq. (35)] by 1/M 
to yield power in Eq. (37) is discussed in [31]. 

Table 5. Estimate of minimum required intemal signal path width at 24-dB maximum peak gain. 

Bit Budget Attribute 

N =  16 
n = 3  
o = 1  
m = l  
r = max[0, (24/6) - n - m] 
N + n + o + m + r = 21 bits 

Output fidelity, assumed input signal quantization 
Truncation noise immunity (criterion 2) 
Internal signal overflow prevention 
Limit-cycle suppression (6 dB per bit) 
Signal path LSBs for user-controlled input level attenuation* 
Total 

* Assuming that the filter internal signal path resolution ultimately exceeds the input signal resolution, 
then no input signal information will be lost through the use of an input level control, provided that 
the attenuation is limited to the difference in resolution (6 dB per bit, 24 dB recommended). 
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in the original data record. If we designate ~2/M to be 
the average noise power spectral level (the average of 
]'q(eJ=)12/M over frequency), then solving Eq. (37) we 
find that 

' lq 2 - -  
- -  - N (38) 
M 

which is independent of the sample rate, as expected. 
This result [Eq. (38)] indicates that the noise power 

spectral level is proportional to the noise power. This 
means that if the noise power drops by 6 dB, then so 
will its average spectral level (assuming M fixed). We 
needed to know this to justify the claim (supporting 
fidelity criterion 1 in Section 3.3.2) that the average 
difference in truncation noise spectral level between a 
16-bit and a 20-bit quantized signal is 24 dB [ = (20 - 
16) x 61. 
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